Posts

Showing posts from November, 2020

Supercomputer

Image
A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2017, there are supercomputers which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS). Since November 2017, all of the world's fastest 500 supercomputers run Linux-based operating systems. Additional research is being conducted in the United States, the European Union, Taiwan, Japan, and China to build faster, more powerful and technologically superior exascale supercomputers. Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and proper...

History

Image
In 1960 UNIVAC built the Livermore Atomic Research Computer (LARC), today considered among the first supercomputers, for the US Navy Research and Development Center. It still used high-speed drum memory, rather than the newly emerging disk drive technology. Also among the first supercomputers was the IBM 7030 Stretch. The IBM 7030 was built by IBM for the Los Alamos National Laboratory, which in 1955 had requested a computer 100 times faster than any existing computer. The IBM 7030 used transistors, magnetic core memory, pipelined instructions, prefetched data through a memory controller and included pioneering random access disk drives. The IBM 7030 was completed in 1961 and despite not meeting the challenge of a hundredfold increase in performance, it was purchased by the Los Alamos National Laboratory. Customers in England and France also bought the computer and it became the basis for the IBM 7950 Harvest, a supercomputer built for cryptanalysis. The third pioneering supercomputer ...

Special purpose supercomputers

Image
A number of "special-purpose" systems have been designed, dedicated to a single problem. This allows the use of specially programmed FPGA chips or even custom ASICs, allowing better price/performance ratios by sacrificing generality. Examples of special-purpose supercomputers include Belle, Deep Blue, and Hydra, for playing chess, Gravity Pipe for astrophysics, MDGRAPE-3 for protein structure computation molecular dynamics and Deep Crack, for breaking the DES cipher.

Energy usage and heat management

Image
Throughout the decades, the management of heat density has remained a key issue for most centralized supercomputers. The large amount of heat generated by a system may also have other effects, e.g. reducing the lifetime of other system components. There have been diverse approaches to heat management, from pumping Fluorinert through the system, to a hybrid liquid-air cooling system or air cooling with normal air conditioning temperatures. A typical supercomputer consumes large amounts of electrical power, almost all of which is converted into heat, requiring cooling. For example, Tianhe-1A consumes 4.04 megawatts (MW) of electricity. The cost to power and cool the system can be significant, e.g. 4 MW at $0.10/kWh is $400 an hour or about $3.5 million per year. Heat management is a major issue in complex electronic devices and affects powerful computer systems in various ways. The thermal design power and CPU power dissipation issues in supercomputing surpass those of traditional comput...

Software and system management

Image
Operating systems edit Since the end of the 20th century, supercomputer operating systems have undergone major transformations, based on the changes in supercomputer architecture. While early operating systems were custom tailored to each supercomputer to gain speed, the trend has been to move away from in-house operating systems to the adaptation of generic software such as Linux. Since modern massively parallel supercomputers typically separate computations from other services by using multiple types of nodes, they usually run different operating systems on different nodes, e.g. using a small and efficient lightweight kernel such as CNK or CNL on compute nodes, but a larger system such as a Linux-derivative on server and I/O nodes. While in a traditional multi-user computer system job scheduling is, in effect, a tasking problem for processing and peripheral resources, in a massively parallel system, the job management system needs to manage the allocation of both computational and co...

Distributed supercomputing

Image
Opportunistic approaches edit Opportunistic Supercomputing is a form of networked grid computing whereby a "super virtual computer" of many loosely coupled volunteer computing machines performs very large computing tasks. Grid computing has been applied to a number of large-scale embarrassingly parallel problems that require supercomputing performance scales. However, basic grid and cloud computing approaches that rely on volunteer computing cannot handle traditional supercomputing tasks such as fluid dynamic simulations. The fastest grid computing system is the distributed computing project Folding@home (F@h). F@h reported 2.5 exaFLOPS of x86 processing power As of April 2020update. Of this, over 100 PFLOPS are contributed by clients running on various GPUs, and the rest from various CPU systems. The Berkeley Open Infrastructure for Network Computing (BOINC) platform hosts a number of distributed computing projects. As of February 2017update, BOINC recorded a processing powe...

High-performance computing clouds

Image
Cloud computing with its recent and rapid expansions and development have grabbed the attention of high-performance computing (HPC) users and developers in recent years. Cloud computing attempts to provide HPC-as-a-service exactly like other forms of services available in the cloud such as software as a service, platform as a service, and infrastructure as a service. HPC users may benefit from the cloud in different angles such as scalability, resources being on-demand, fast, and inexpensive. On the other hand, moving HPC applications have a set of challenges too. Good examples of such challenges are virtualization overhead in the cloud, multi-tenancy of resources, and network latency issues. Much research is currently being done to overcome these challenges and make HPC in the cloud a more realistic possibility. In 2016 Penguin Computing, R-HPC, Amazon Web Services, Univa, Silicon Graphics International, Sabalcore, and Gomput started to offer HPC cloud computing. The Penguin On Demand...

Performance measurement

Image
Capability versus capacity edit Supercomputers generally aim for the maximum in capability computing rather than capacity computing. Capability computing is typically thought of as using the maximum computing power to solve a single large problem in the shortest amount of time. Often a capability system is able to solve a problem of a size or complexity that no other computer can, e.g., a very complex weather simulation application. Capacity computing, in contrast, is typically thought of as using efficient cost-effective computing power to solve a few somewhat large problems or many small problems. Architectures that lend themselves to supporting many users for routine everyday tasks may have a lot of capacity but are not typically considered supercomputers, given that they do not solve a single very complex problem. Performance metrics edit In general, the speed of supercomputers is measured and benchmarked in FLOPS ("floating-point operations per second"), and not in terms...

Applications

Image
This section is in list format, but may read better as prose . You can help by converting this section, if appropriate. Editing help is available. ( January 2020 ) This section needs expansion . You can help by adding to it. ( January 2020 ) The stages of supercomputer application may be summarized in the following table: Decade Uses and computer involved 1970s Weather forecasting, aerodynamic research (Cray-1). 1980s Probabilistic analysis, radiation shielding modeling (CDC Cyber). 1990s Brute force code breaking (EFF DES cracker). 2000s 3D nuclear test simulations as a substitute for legal conduct Nuclear Non-Proliferation Treaty (ASCI Q). 2010s Molecular Dynamics Simulation (Tianhe-1A) 2020s Scientific research for outbreak prevention/Electrochemical Reaction Research The IBM Blue Gene/P computer has been used to simulate a number of artificial neurons equivalent to approximately one percent of a human cerebral cortex, containing 1.6 billion neurons with appr...

Development and trends

Image
In the 2010s, China, the United States, the European Union, and others competed to be the first to create a 1 exaFLOP (1018 or one quintillion FLOPS) supercomputer. Erik P. DeBenedictis of Sandia National Laboratories has theorized that a zettaFLOPS (1021 or one sextillion FLOPS) computer is required to accomplish full weather modeling, which could cover a two-week time span accurately. Such systems might be built around 2030. Many Monte Carlo simulations use the same algorithm to process a randomly generated data set; particularly, integro-differential equations describing physical transport processes, the random paths, collisions, and energy and momentum depositions of neutrons, photons, ions, electrons, etc. The next step for microprocessors may be into the third dimension; and specializing to Monte Carlo, the many layers could be identical, simplifying the design and manufacture process. The cost of operating high performance supercomputers has risen, mainly due to increasing powe...

In fiction

Many science fiction writers have depicted supercomputers in their works, both before and after the historical construction of such computers. Much of such fiction deals with the relations of humans with the computers they build and with the possibility of conflict eventually developing between them. Examples of supercomputers in fiction include HAL-9000, Multivac, The Machine Stops, GLaDOS, The Evitable Conflict, Vulcan's Hammer, Colossus and Deep Thought.